Dedicated Cryptanalysis of Lightweight Block Ciphers

María Naya-Plasencia INRIA, France

Šibenik 2014

Outline

- Introduction
- Impossible Differential Attacks
- Meet-in-the-middle and improvements
- Multiple Differential Attacks
- Dedicated attacks (examples)

Outline

- Introduction
- Dedicated attacks (examples):
- Importance of dedicated attacks: PRINTcipher
- Importance of reduced-round attacks: KLEIN-64

Importance of Dedicated Cryptanalysis

Lightweight Dedicated Analysis

- Lightweight: more 'risky' design, lower security margin, simpler components.

Often innovative constructions: dedicated attacks

Lightweight Dedicated Analysis

Normally, designers should have already analyzed the cipher with respect to known attacks...
...though not always!, or not always that straightforward.

- Dedicated attacks: New!
$2 / 28$

PRESENT and PRINTcipher

PRESENT [BKLPPRSV’07]

- One of the most popular ciphers, proposed in 2007, and now ISO/IEC standard is PRESENT.
- Very large number of analysis published (over 20).
- Best attacks so far: multiple linear attacks (26r/31r).
$3 / 28$

PRESENT

Block $n=64$ bits, key 80 or 128 bits.

31 rounds +1 key addition.

PRESENT

Linear cyptanalysis: because of the Sbox, a linear approximation 1 to 1 with bias 2^{-3} per round[Ohk.'09].

- Multiple linear attacks: consider several possible approxs simultaneously \Rightarrow up to 26 rounds out of 31 [Cho'10].

PRINTcipher

- Many PRESENT-like ciphers proposed: Maya, Puffin, PRINTcipher
- Usually, weaker than the original.
- PRINTcipher[KLPR'10]: first cryptanalysis: invariant subspace attack[LAAZ'11].

6/28

PRINTcipher

48rounds.
$7 / 28$

The Invariant Subspace Attack [LAAZ'11]

With probability 1 :

- Not a key recovery, but a very bad property for 2^{51} weak keys...

KLEIN-64: from reduced-round to full-version

KLEIN [GNL'11]

- KLEIN-64 with 12 rounds.

9/28

KLEIN

SubNibbles

x	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
$\mathrm{S}[\mathrm{x}]$	7	4	a	9	1	f	b	0	c	3	2	6	8	e	d	5

KLEIN

RotateNibbles

$11 / 28$

KLEIN

MixNibbles

$12 / 28$

Previous Cryptanalysis

Version	Source	Rounds	Data	Time	Memory	Attack
KLEIN-64	[Yu, Wu, Li, Zhang, Inscrypt11]	7	$2^{34.3}$	$2^{45.5}$	2^{32}	integral
	[Yu, Wu, Li, Zhang, Inscrypt11]	8	2^{32}	$2^{46.8}$	2^{16}	truncated
	[Aumasson, Naya-Plasencia, Saarinen, Indocrypt11]	8	2^{35}	2^{35}	-	differential
	[Nikolic, Wang, Wu, ePrint iacr 2013]	10	1	2^{62}	2^{60}	mitm
	[Ahmadian, Salmasizadeh, Reza Aref ePrint iacr 2013]	12	2^{39}	$2^{62.84}$	$2^{4.5}$	biclique

$13 / 28$

Main Ideas From Previous Analysis

- All layers except MixNibbles do not mix higher nibbles with lower nibbles.
- MixColumn: inactive higher nibbles input \Rightarrow same output pattern if the MSB of the 4 LN differences are equal $\left(2^{-3}\right)$.

Main Ideas From Previous Analysis

- KeySchedule algorithm: lower nibbles and higher nibbles are not mixed.

$15 / 28$

7-round attack

- Truncated differential path of probability $2^{-28.08}<2^{-32}$, 64 -bit key recovered with 2^{33} operations.

7-round attack

1.Generate data
2. Keep the pairs with $M N^{-1}(C T x t)$ that have higher nibbles inactive
3. Guess the lower nibbles of the key
4. Test it by checking the difference obtained when inverting MN of round 6

$17 / 28$

7-round attack

- Last round condition for a random pair $2^{-32}<2^{-28.08}$. \Rightarrow a pair with HN inactive difference in last round is a conforming one.
- Each conforming pair gives a 6-bit filter.
- Repeating the procedure, we can recover the correct value for the LN of the key.
$18 / 28$

New Atack [LNP'14]

- Use more MixNibble steps to discard more keys.

\Rightarrow We want the difference output at the previous MN
- invert an entire LN round in values and diff.
- need only lower (key) nibbles to invert RN, SN and ARK.
- how to invert MN?

Inverting one $M i x C o l u m n^{-1}(a, b, c, d)$

- Let $a=\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right)$ be the binary decomposition of a byte.
- Given the input lower nibbles, we require 3 information bits from the higher nibbles:

$$
\left\{\begin{array}{l}
a_{1}+a_{2}+b_{2}+c_{0}+c_{1}+c_{2}+d_{0}+d_{2} \\
a_{1}+b_{0}+b_{1}+c_{1}+d_{0}+d_{1} \\
a_{0}+a_{1}+a_{2}+b_{0}+b_{2}+c_{1}+c_{2}+d_{2}
\end{array}\right.
$$

\Rightarrow a 6-bit guess per round

Inverting one round

- Compute the LN state and check the difference shape by inverting MN (a certain probability).
- $\Rightarrow 2^{6}$ computations.
- In the iterative part (probability 2^{-6}), just one guess remains.
$21 / 28$

 MNDㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁ

 MNロロ ㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁㅁ

Attack on KLEIN-64

- Generate enough data (path probability $2^{-69.5}$). Keep pairs with higher nibbles inactive before the last MN.
- For each iterative rounds:
- LN key guess and first round to discard some.
- Invert round by round with a 6-bit guess and check if the difference obtained before MN is as wanted: 1 guess over 2^{6} remains.

First rounds to discard candidates

- At the end of the attack, 2^{8} candidates remain.
- Higher nibbles search discards the bad ones.
- Other differential paths are possible, offering different trade-offs data/time/memory.

Some Improvements

- Use structures to limit data complexity.
- Invert MN with a 2^{4} complexity (instead of 2^{6}).
- Use MixColumn independence to reduce the cost of the lower nibbles key guess in the first round.
- Higher nibbles search can be speeded up using the information from the 6 -bit guesses.
$25 / 28$

Attack Complexities on KLEIN-64

Case	Data	Time	Memory
1	$2^{54.5}$	2^{57}	2^{16}
2	$2^{56.5}$	2^{62}	2^{4}
3	2^{35}	$2^{63.8}$	2^{32}
4	2^{46}	2^{62}	2^{16}

26/28

KLEIN results

- First attack on full KLEIN-64.
- Verified experimentally on reduced-round versions (first practical attack on 9 rounds).
- Permits reaching 13 rounds over 16 of KLEIN-80 and 14 rounds over 20 of KLEIN-96.
$27 / 28$

Conclusion

To Sum Up ${ }^{1}$

- Classical attacks, but also new dedicated ones exploiting the originality of the designs.
- Importance of reduced-round analysis to re-think security margin, or as first steps of further analysis.
- A lot of ciphers to analyze/ a lot of work to do!
${ }^{1}$ Thank you to Valentin Suder, Virginie Lallemand and Christina Boura for their help with the figures

